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Abstract

An efficient algorithmic solution to the classical five-point
relative pose problem is presented. The problem is to find
the possible solutions for relative camera pose between two
calibrated views given five corresponding points. The algo-
rithm consists of computing the coefficients of a tenth de-
gree polynomial in closed form and subsequently finding its
roots. It is the first algorithm well suited for numerical im-
plementation that also corresponds to the inherent complex-
ity of the problem. We investigate the numerical precision
of the algorithm. We also study its performance under noise
in minimal as well as over-determined cases. The perfor-
mance is compared to that of the well known 8 and 7-point
methods and a 6-point scheme. The algorithm is used in
a robust hypothesize-and-test framework to estimate struc-
ture and motion in real-time with low delay. The real-time
system uses solely visual input and has been demonstrated
at major conferences.

Keywords: Imaging Geometry, Motion, Relative Orien-
tation, Structure from Motion, Camera Calibration, Ego-
motion Estimation, Scene Reconstruction.

1. Introduction
Reconstruction of camera positions and scene structure
based on images of scene features from multiple viewpoints
has been studied for over two centuries, first by the pho-
togrammetry community and more recently in computer vi-
sion. In the classical setting, the intrinsic parameters of the
camera, such as focal length, are assumed known a pri-
ori. This calibrated setting is where the five-point prob-
lem arises. Given the images of five unknown scene points
from two distinct unknown viewpoints, what are the possi-
ble solutions for the configuration of the points and cam-
eras? Clearly, only the relative positions of the points and
cameras can be recovered. Moreover, the overall scale of
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the configuration can never be recovered solely from im-
ages. Apart from this ambiguity, the five-point problem was
proven by Kruppa [19] to have at most eleven solutions.
This was later improved upon [3, 4, 6, 22, 16], showing that
there are at most ten solutions and that there are ten solu-
tions in general (including complex ones). The ten solutions
correspond to the roots of a tenth degree polynomial. How-
ever, Kruppa’s method requires the non-trivial operation of
finding all intersections between two sextic curves and there
is no previously known practical method of deriving the
coefficients of the tenth degree polynomial in the general
case. A few algorithms suitable for numerical implemen-
tation have also been devised. In [44] a 60 × 60 sparse
matrix is built, which is subsequently reduced using linear
algebra to a 20×20 non-symmetric matrix whose eigenval-
ues and eigenvectors encode the solution to the problem. In
[32] an efficient derivation is given that leads to a thirteenth
degree polynomial whose roots include the solutions to the
five-point problem. The solution presented in this paper is
a refinement of this. A better elimination that leads directly
in closed form to the tenth degree polynomial is used. Thus,
an efficient algorithm that corresponds exactly to the intrin-
sic degree of difficulty of the problem is obtained.

For the structure and motion estimation to be robust and
accurate in practice, more than five points have to be used.
The classical way of making use of many points is to mini-
mize a least squares measure over all points, see for exam-
ple [18]. Our intended application for the five-point algo-
rithm is as a hypothesis generator within a random sample
consensus scheme (RANSAC) [8, 26]. Many random sam-
ples containing five point correspondences are taken. Each
sample yields a number of hypotheses for the relative ori-
entation that are scored by a robust statistical measure over
all points in two or more views. The best hypothesis is then
refined iteratively. Such a hypothesize-and-test architecture
has become the standard way of dealing with mismatched
point correspondences [41, 48, 14, 24] and has made auto-
matic reconstructions spanning hundreds of views possible
[1, 34, 7, 25].

The requirement of prior intrinsic calibration was re-
laxed in the last decade [5, 12, 14], leading to higher flex-
ibility and less complicated algorithms. So, why consider



the calibrated setting? Apart from the theoretical interest,
one answer to this question concerns stability and unique-
ness of solutions. Enforcing the intrinsic calibration con-
straints often gives a crucial improvement of both the accu-
racy and robustness of the structure and motion estimates.
Currently, the standard way of achieving this is through
an initial uncalibrated estimate followed by iterative refine-
ment to bring the estimate into agreement with the calibra-
tion constraints. When the intrinsic parameters are known
a priori, the five-point algorithm is a more direct way of en-
forcing the calibration constraints exactly and obtaining a
Euclidean reconstruction. The accuracy and robustness im-
provements gained by enforcing the calibration constraints
are particularly significant for planar or near planar scenes
and scenes that appear planar in the imagery. The uncali-
brated methods fail when faced with coplanar scene points,
since there is then a continuum of possible solutions. It has
been proposed to deal with this degeneracy using model se-
lection [43, 35], switching between a homographic model
and the general uncalibrated model as appropriate. In the
calibrated setting, coplanar scene points only cause at most
a two-fold ambiguity [21, 23]. With a third view, the am-
biguity is in general resolved. In light of this, a RANSAC
scheme that uses the five-point algorithm over three or more
views is proposed. It applies to general structure but also
continues to operate correctly despite scene planarity, with-
out relying on or explicitly detecting the degeneracy. In
essence, the calibrated model can cover both the planar and
general structure cases seamlessly. This gives some hope
of dealing with the approximately planar cases, where nei-
ther the planar nor the uncalibrated general structure model
applies well.

The rest of the paper is organized as follows. Section 2
establishes some notation and describes the constraints used
in the calibrated and uncalibrated cases. Section 3 presents
the five-point algorithm. Section 4 discusses planar degen-
eracy. Section 5 outlines the RANSAC schemes for two
and three views. Section 6 gives results. The numerical ac-
curacy of the algorithm is investigated in Section 6.1. The
distribution of the number of solutions is studied in Section
6.2. Timing information is given in Section 6.3. The per-
formance of the algorithm in noisy conditions is studied in
Section 6.4, where the performance of the 5-point algorithm
is compared to that of the well known 8 and 7-point algo-
rithms and a 6-point scheme. Some reconstruction results
are given in Section 6.5. Section 7 concludes.

2. Preliminaries

Image points are represented by homogeneous 3-vectors q
and q′ in the first and second view, respectively. World
points are represented by homogeneous 4-vectors Q. A per-
spective view is represented by a 3 × 4 camera matrix P

indicating the image projection q ∼ PQ, where ∼ denotes
equality up to scale. A view with a finite projection centre
can be factored into P = K [R | t], where K is a 3 × 3
upper triangular calibration matrix holding the intrinsic pa-
rameters and R is a rotation matrix. Let the camera matrices
for the two views be K1 [I | 0] and P = K2 [R | t]. Let [t]×
denote the skew symmetric matrix

[t]× ≡
⎡
⎣ 0 −t3 t2

t3 0 −t1
−t2 t1 0

⎤
⎦ (1)

so that [t]× x = t×x for all x. Then the fundamental matrix
is

F ≡ K−�
2 [t]× RK−1

1 . (2)

The fundamental matrix encodes the well known copla-
narity, or epipolar constraint

q′�Fq = 0. (3)

The fundamental matrix can be considered without knowl-
edge of the calibration matrices. Moreover, it continues to
exist when the projection centres are not finite. If K1 and
K2 are known, the cameras are said to be calibrated. In this
case, we can always assume that the image points q and q ′

have been premultiplied by K−1
1 and K−1

2 , respectively, so
that the epipolar constraint simplifies to

q′�Eq = 0, (4)

where the matrix E ≡ [t]× R is called the essential matrix.
Any rank-2 matrix is a possible fundamental matrix, i.e. we
have the well known single cubic constraint, e.g. [14]:

Theorem 1 A real non-zero 3×3 matrix F is a fundamental
matrix if and only if it satisfies the equation

det(F ) = 0. (5)

An essential matrix has the additional property that the two
non-zero singular values are equal. This leads to the follow-
ing cubic constraints on the essential matrix, adapted from
[38, 6, 22, 32]:

Theorem 2 A real non-zero 3 × 3 matrix E is an essential
matrix if and only if it satisfies the equation

EE�E − 1
2
trace(EE�)E = 0. (6)

Both (5) and (6) will help us recover the essential matrix.
Once the essential matrix is known, R, t and the camera
matrices can be recovered from it.



3. The Five-Point Algorithm
In this section the five-point algorithm is described, first in a
straightforward manner. Recommendations for an efficient
implementation are then given in Section 3.2. Each of the
five point correspondences gives rise to a constraint of the
form (4). This constraint can also be written as

q̃�Ẽ = 0, (7)

where

q̃≡[
q1q

′
1 q2q

′
1 q3q

′
1 q1q

′
2 q2q

′
2 q3q

′
2 q1q

′
3 q2q

′
3 q3q

′
3

]�(8)

Ẽ≡[
E11 E12 E13 E21 E22 E23 E31 E32 E33

]�. (9)

By stacking the vectors q̃� for all five points, a 5×9 matrix
is obtained. Four vectors X̃, Ỹ , Z̃, W̃ that span the right
nullspace of this matrix are now computed. The most com-
mon way to achieve this is by singular value decomposi-
tion [36], but QR-factorisation as described in Section 3.2
is much more efficient. The four vectors correspond directly
to four 3 × 3 matrices X, Y, Z, W and the essential matrix
must be of the form

E = xX + yY + zZ + wW (10)

for some scalars x, y, z, w. The four scalars are defined only
up to a common scale factor and it is therefore assumed that
w = 1. Note here that the algorithm can be extended to us-
ing more than 5 points in much the same way as the uncal-
ibrated 7 and 8-point methods. In the overdetermined case,
the four singular vectors X, Y, Z, W that correspond to the
four smallest singular values are used. By inserting (10)
into the ten cubic constraints (5), (6) and performing Gauss-
Jordan elimination with partial pivoting we obtain equation
system A:

A x3 y3 x2y xy2 x2z x2 y2z y2 xyz xy x y 1
〈a〉 1 . . . . . . . . . [2] [2] [3]
〈b〉 1 . . . . . . . . [2] [2] [3]
〈c〉 1 . . . . . . . [2] [2] [3]
〈d〉 1 . . . . . . [2] [2] [3]
〈e〉 1 [2] [2] [3]
〈f〉 1 [2] [2] [3]
〈g〉 1 [2] [2] [3]
〈h〉 1 [2] [2] [3]
〈i〉 1 [2] [2] [3]
〈j〉 1 [2] [2] [3]

where . denotes some scalar value and [N ] denotes a poly-
nomial of degree N in the variable z. Note that the elimi-
nation can optionally be stopped four rows early. Further,
define the additional equations

〈k〉≡ 〈e〉 − z〈f〉 (11)

〈l〉≡ 〈g〉 − z〈h〉 (12)

〈m〉≡ 〈i〉 − z〈j〉 (13)

These equations are arranged into a 3×3 matrix B contain-
ing polynomials in z:

B x y 1
〈k〉 [3] [3] [4]
〈l〉 [3] [3] [4]
〈m〉 [3] [3] [4]

Since the vector [ x y 1 ]� is a nullvector to B, the de-
terminant of B must vanish. The determinant is the tenth
degree polynomial

〈n〉 ≡ det(B). (14)

The real roots of 〈n〉 are now computed. There are vari-
ous standard methods to accomplish this. A highly efficient
way is to use Sturm-sequences [9] to bracket the roots, fol-
lowed by a root-polishing scheme. This is described in Sec-
tion 3.2. Another method, which is easy to implement with
most linear algebra packages, is to eigen-decompose a com-
panion matrix. After normalising 〈n〉 so that n10 = 1, the
roots are found as the eigenvalues of the 10×10 companion
matrix ⎡

⎢⎢⎢⎣
−n9 −n8 · · · −n0

1
. . .

1

⎤
⎥⎥⎥⎦ . (15)

For each root z the variables x and y can be found using
equation system B. The essential matrix is then obtained
from (10). In Section 3.1 it is described how to recover R
and t from the essential matrix.

3.1. Recovering R and t from E

Let

D ≡
⎡
⎣ 0 1 0

−1 0 0
0 0 1

⎤
⎦ . (16)

R and t are recovered from the essential matrix on the basis
of the following theorem [46, 14]:

Theorem 3 Let the singular value decomposition of the es-
sential matrix be E ∼ Udiag(1, 1, 0)V �, where U and
V are chosen such that det(U) > 0 and det(V ) > 0.

Then t ∼ tu ≡ [
u13 u23 u33

]�
and R is equal to

Ra ≡ UDV � or Rb ≡ UD�V �.

Any combination of R and t according to the above pre-
scription satisfies the epipolar constraint (4). To resolve the
inherent ambiguities, it is assumed that the first camera ma-
trix is [I | 0] and that t is of unit length. There are then the
following four possible solutions for the second camera ma-
trix: PA ≡ [Ra | tu], PB ≡ [Ra | −tu], PC ≡ [Rb | tu],
PD ≡ [Rb | −tu] . One of the four choices corresponds
to the true configuration. Another one corresponds to the
twisted pair which is obtained by rotating one of the views
180 degrees around the baseline. The remaining two corre-
spond to reflections of the true configuration and the twisted



pair. For example, PA gives one configuration. PC corre-
sponds to its twisted pair, which is obtained by applying the
transformation

Ht ≡
[

I 0
−2v13 −2v23 −2v33 −1

]
. (17)

PB and PD correspond to the reflections obtained by apply-
ing Hr ≡ diag(1, 1, 1,−1). In order to determine which
choice corresponds to the true configuration, the cheirality
constraint 1 is imposed. One point is sufficient to resolve
the ambiguity. The point is triangulated using the view pair
([I | 0] , PA) to yield the space point Q and cheirality is
tested. If c1 ≡ Q3Q4 < 0, the point is behind the first
camera. If c2 ≡ (PAQ)3Q4 < 0, the point is behind the
second camera. If c1 > 0 and c2 > 0, PA and Q corre-
spond to the true configuration. If c1 < 0 and c2 < 0, the
reflection Hr is applied and we get PB . If on the other hand
c1c2 < 0, the twist Ht is applied and we get PC and the
point HtQ. In this case, if Q3(HtQ)4 > 0 we are done.
Otherwise, the reflection Hr is applied and we get PD .

3.2. Efficiency Considerations
In summary, the main computational steps of the algorithm
outlined above are as follows:

1. Extraction of the nullspace of a 5 × 9 matrix.

2. Expansion of the cubic constraints (5) and (6).

3. Gauss-Jordan elimination with partial pivoting on the
10 × 20 matrix A.

4. Expansion of the determinant polynomial of the 3 × 3
polynomial matrix B to obtain the tenth degree poly-
nomial (14).

5. Extraction of roots from the tenth degree polynomial.

6. Recovery of R and t corresponding to each real root
and point triangulation for disambiguation.

We will discuss efficient implementation of each step.

3.2.1. Step 1: Nullspace Extraction

Singular value decomposition is the gold standard for the
nullspace extraction in Step 1, but a specifically tailored
QR-factorisation is much more efficient. The five input vec-
tors are orthogonalized first, while pivoting, to form the or-
thogonal basis q̃1, . . . , q̃5. This basis is then amended with
the 9 × 9 identity matrix to form the matrix

[
q̃1 · · · q̃5 | I

]�
(18)

The orthogonalisation with pivoting is now continued until
nine orthogonal vectors are obtained. The last four rows
constitute an orthogonal basis for the nullspace.

1The constraint that the scene points should be in front of the cameras.

3.2.2. Step 2: Constraint Expansion

An efficient way to implement Step 2 is to create a function
o1(pi, pj) that multiplies two polynomials of degree one in
x, y, z and another function o2(pi, pj) that multiplies two
polynomials pi and pj of degrees two and one, respectively.
Equation (5) is then handled through expansion by minors,
e.g. as

det(E) = o2(o1(E12, E23) − o1(E13, E22), E31) +
o2(o1(E13, E21) − o1(E11, E23), E32) +
o2(o1(E11, E22) − o1(E12, E21), E33). (19)

To expand Equation (6), we compute the upper triangular
part of the symmetric polynomial matrix EE� by

(EE�)ij =
3∑

k=1

o1(Eik,Ejk), (20)

followed by the upper triangular part of the symmetric poly-
nomial matrix

Λ ≡ EE� − 1
2
trace(EE�)I (21)

through

Λij =
{

(EE�)ij − 1
2

∑3
k=1 (EE�)kk i = j

(EE�)ij i �= j
. (22)

Equation (6) is the same as ΛE = 0 and we compute ΛE
through the standard matrix multiplication formula

(ΛE)ij =
3∑

k=1

o2(Λik, Ekj), (23)

while using only the upper triangular part of Λ.

3.2.3. Step 3: Gauss-Jordan Elimination

Gauss-Jordan elimination with partial pivoting is presented
e.g. in [36]. For optimal efficiency, the elimination is
stopped four rows before completion.

3.2.4. Step 4: Determinant Expansion

The determinant polynomial 〈n〉 in Equation (14) is com-
puted through expansion by minors, e.g.

p1 ≡ B12B23 − B13B22 (24)

p2 ≡ B13B21 − B11B23 (25)

p3 ≡ B11B22 − B12B21 (26)

followed by

〈n〉 ≡ p1B31 + p2B32 + p3B33. (27)

The cofactor polynomials are retained so that for each root
z one can recover x and y by

x = p1(z)/p3(z) y = p2(z)/p3(z). (28)



3.2.5. Step 5: Root Extraction

Sturm sequences are used to bracket the roots in Step 5.
The definition of a Sturm sequence, also called Sturm chain
is given in Appendix A. The tenth degree polynomial has an
associated Sturm sequence, which consists of eleven poly-
nomials of degree zero to ten. The number of real roots in an
interval can be determined by counting the number of sign
changes in the Sturm sequence at the two endpoints of the
interval. The Sturm sequence can be evaluated recursively
with 38 floating point operations. 10 additional operations
are required to count the number of sign changes. This is to
be put in relation to the 20 floating point operations required
to evaluate the polynomial itself. With this simple test for
number of roots in an interval, it is fairly straightforward
to hunt down a number of intervals, each containing one of
the real roots of the polynomial. Any root polishing scheme
[36] can then be used to determine the roots accurately. In
our experiments we simply use 30 iterations of bisection,
since this provides a guaranteed precision in fixed time and
requires almost no control overhead.

3.2.6. Step 6: R and t Recovery

Step 6 requires a singular value decomposition of the essen-
tial matrix and triangulation of one or more points. When
all the other steps of the algorithm have been efficiently im-
plemented, these operations can take a significant portion of
the computation time, since they have to be carried out for
each real root. A specifically tailored singular value decom-
position is given in Appendix B. Efficient triangulation is
discussed in Appendix C. Note that a triangulation scheme
that assumes ideal point correspondences can be used since
for true solutions the recovered essential matrix is such that
intersection is guaranteed for the five pairs of rays.

4. Planar Structure Degeneracy
The planar structure degeneracy is an interesting example
of the differences between the calibrated and uncalibrated
frameworks. The degrees of ambiguity that arise from a
planar scene in the two frameworks are summarized in Ta-
ble 1. For pose estimation with known intrinsics there is a
unique solution provided that the plane is finite and that the
cheirality constraint is taken into account 2. In theory, focal
length can also be determined if the principal direction does
not coincide with the plane normal. Without knowledge of
the intrinsics however, there is a three degree of freedom
ambiguity that can be thought of as parameterized by the
position of the camera centre. For any camera centre, ap-
propriate choices for the calibration matrix K and rotation

2If the plane is the plane at infinity it is impossible to determine the
camera position and without the cheirality constraint the reflection across
the plane constitutes a second solution.

matrix R can together produce any homography between
the plane and the image.

With known intrinsics and two views of an unknown
plane, there are two solutions for the essential matrix
[21, 23], unless the baseline is perpendicular to the plane
in which case there is a unique solution. The cheirality con-
straint resolves the ambiguity unless all visible points are
closer to one viewpoint than the other [21]. If all visible
points are closer to one viewpoint, the false solution is ob-
tained from the true one by reflecting that view across the
plane and then taking the twisted pair of the resulting con-
figuration. The structure of the false solution also resides in
a plane. However, the structure is projectively distorted.
The twisted pair operation maps the plane of points that
have the same distance to both viewpoints to the plane at
infinity. Hence, the line of points in the plane that have the
same distance to both viewpoints is mapped to infinity.

The 5-point method is essentially unaffected by the pla-
nar degeneracy and still works. Six correspondences from
coplanar but otherwise general points provide linearly inde-
pendent constraints on the essential matrix [33]. However,
the 6-point method fails for planar scenes.

Any attempts to recover intrinsic parameters from two
views of a planar surface are futile according to the follow-
ing theorem, adapted from [22]:

Theorem 4 For any choice of intrinsic parameters, any ho-
mography can be realized between two views by some posi-
tioning of the two views and a plane.

If the calibration matrices are completely unknown, there
is a two degree of freedom ambiguity for projective recon-
struction, which can be thought of as parameterized by the
epipole in one of the images, i.e. for any choice of epipole
in the first image, there is a unique valid solution. Once the
epipole is specified in the first image, the problem of solv-
ing for the remaining parameters of the fundamental matrix
is algebraically equivalent to solving for the projective pose
of a one-dimensional camera in a two-dimensional world,
where the projection centre of the 1-D camera corresponds
to the epipole in the second image, the orientation corre-
sponds to the epipolar line homography and the points in
the second image correspond to world points in the 2-D
space. The problem according to Steiner’s and Chasles’
Theorems [37] has a unique solution unless all the points
and the epipole in the second image lie on a conic, which
is not the case since we are assuming that the structure is
dense in the plane.

For three views with known intrinsics there is a unique
solution. If the views are in general position a common un-
known focal length can also be recovered, but this requires
rotation and suffers from additional critical configurations.
With unknown variable intrinsics there are 3 additional de-
grees of freedom for each view above two.



1 View Known
Structure

2 Views Un-
known Struc-
ture

n > 2 Views
Unknown
Structure

Known intrin-
sics

Unique Two-fold or
unique

Unique

Unknown fixed
focal length

Unique in gen-
eral

1 d.o.f. Unique in gen-
eral

Unknown vari-
able intrinsics

3 d.o.f. 2 dof Projective,
+8 for Metric

3n-4 dof Projec-
tive, +8 Metric

Table 1: The degrees of ambiguity in the face of planar degener-
acy for pose estimation and structure and motion estimation. The
motion is assumed to be general and the structure is assumed to be
dense in the plane. See the text for further explanation.

5. Applying the Algorithm Together
with Preemptive RANSAC

We use the algorithm in conjunction with preemptive ran-
dom sampling consensus in two or three views. A number
of random samples are taken, each containing five point-
tracks. The five-point algorithm is applied to each sample
and thus a number of hypotheses are generated. We then
seek the best hypothesis according to a robust measure over
all the point-tracks. As described in [26], preemptive scor-
ing is used for efficiency reasons. See also [2]. Finally, the
best hypothesis is polished by iterative refinement [45].

When three or more views are available, we prefer to dis-
ambiguate and score the hypotheses utilising three views. A
unique solution can then be obtained from each sample of
five tracks and this continues to hold true even if the scene
points are all perfectly coplanar. For each sample of five
point-tracks, the points in the first and last view are used in
the five-point algorithm to determine a number of possible
camera matrices for the first and last view. For each case,
the five points are triangulated 3. The remaining view can
now be determined by any 3-point calibrated perspective
pose algorithm, see [11] for a review and additional refer-
ences. Up to four solutions are obtained and disambiguated
by the additional two points. The reprojection errors of the
five points in all of the views are now enough to single out
one hypothesis per sample. Finally, the solutions from all
samples are scored preemptively by a robust measure using
all available point tracks. To score motion hypotheses over
three views we use a Sampson approximation [14, 42, 25] of
the minimum image perturbation required to bring a triplet
of points to trifocal incidence. A minimal closed form ex-
pression is essential for real-time performance. Since no
such expression has been given in the literature we present
one in Appendix D.

6. Results
In the minimal case with five points, the two main require-
ments on the five-point method are accuracy and speed. The

3See Appendix C.

numerical accuracy of the algorithm is investigated in Sec-
tion 6.1. The computation time is partially dependent on the
number of real solutions. The distribution of the number of
solutions is studied in Section 6.2. Timing information for
our efficient implementation of the five-point algorithm is
given in Section 6.3. The performance of the algorithm in
noisy conditions is studied in Section 6.4. The performance
of the 5-point algorithm is compared to that of the 6,7 and
8-point algorithms, briefly described in Section 6.4. Since
the algorithm can also be used as a least-squares method,
results are presented both for minimal and over-determined
cases. Note that in the minimal case, the effects of noise
should be the same for any five-point solution method. In
the over-determined case however, this is no longer true.
In fact, most of the previously suggested five-point solution
methods do not generalize naturally to the over-determined
case.

The algorithm is used as a part of a system that recon-
structs structure and motion from video live and in real-
time. The system has been demonstrated at major confer-
ences [26, 27, 28, 29]. Some system information and results
are given in Section 6.5.

6.1. Numerical Accuracy
The numerical precision of different incarnations of the al-
gorithm is investigated in Figures 1-4. Since the essential
matrix is defined only up to scale and there are multiple so-
lutions Êi, the minimum residual

min
i

min(‖ Êi

‖ Êi ‖
− E

‖ E ‖ ‖, ‖ E

‖ E ‖ +
Êi

‖ Êi ‖
‖)
(29)

from each problem instance is used. All computations were
performed in double precision. The accuracy of the im-
plementation that uses QR-decomposition in Step 1 and
Sturm-bracketing followed by root polishing in Step 5 is
shown in Figure 1 for generic and planar scenes. Note that
the typical errors are insignificant in comparison to realistic
noise levels. The accuracy of the algorithm when the QR-
decomposition in Step 1 is replaced by singular value de-
composition is shown in Figure 2. The accuracy of the algo-
rithm when the Sturm-bracketing and root polishing in Step
5 is replaced by eigenvalue-decomposition of a companion
matrix is shown in Figure 3. Figure 4 shows the accuracy
when the QR-decomposition in Step 1 is replaced by singu-
lar value decomposition and the Sturm-bracketing and root
polishing in Step 5 is replaced by eigenvalue-decomposition
of a companion matrix.

6.2. The Number of Solutions
The computation time is partially dependent on the number
of real solutions. The distribution of the number of solutions
is given in Table 2. The second row shows the distribution



Figure 1: Distribution of numerical error in the essential matrix
Ê based on 105 random tests. QR is used in Step 1 and Sturm-
bracketing plus root polishing in Step 5. The median error is 1.2 ·
10−10 for generic and 1.6 · 10−10 for planar scenes. 0.1% of the
trials for generic and 0.5% for planar scenes had error magnitudes
above 10 −6.

Figure 2: Distribution of the numerical error when the QR-
decomposition in Step 1 is replaced by SVD. The median error
is 1.2 · 10−10 for generic and 1.5 · 10−10 for planar scenes. 0.1%
of the trials for generic and 0.6% for planar scenes had error mag-
nitudes above 10−6.

of the number of real roots of the tenth degree polynomial
〈n〉 in Equation (14), based on 105 random point and view
configurations. The average is 4.55 roots. The third row
shows the distribution of the number of hypotheses once the
cheirality constraint has been enforced, based on 107 ran-
dom point and view configurations. The average number of
hypotheses is 2.74. Both rows show fractions of the total
number of trials. The distributions are also depicted in Fig-
ure 5. An example of five image correspondences that give
rise to ten distinct physically valid solutions is given in Fig-
ure 6. We have also verified experimentally that five points
in three views in general yield a unique solution, with or
without planar structure and an unknown focal length com-
mon to the three views.

Nr Hyp 0 1 2 3 4 5 6 7 8 9 10
Step 5 0 . 0.12 . 0.50 . 0.36 . 0.15 . 4.9e

−4
Step 6 4.2e

−6
0.17 0.28 0.29 0.17 5.8e

−2
2.5e
−2

1.5e
−3

6.6e
−4

1.5e
−6

2e
−7

Table 2: The distribution of the number of hypotheses that result
from computational steps 5 and 6 (as numbered in Section 3.2).

6.3. Timing
Timing information for our efficient implementation of the
five-point algorithm is given in Table 3. The algorithm is
used as a part of a system that reconstructs structure and
motion from video in real-time. System timing informa-
tion is given in Table 4. MMX code was used for the cru-

Figure 3: Distribution of the numerical error when the Sturm-
bracketing and root polishing in Step 5 is replaced by eigenvalue-
decomposition of a companion matrix. The median error is 1.6 ·
10−14 for generic and 4.4 · 10−14 for planar scenes. 0.1% of the
trials for generic and 0.6% for planar scenes had error magnitudes
above 10 −6.

Figure 4: Distribution of the numerical error with SVD in Step
1 and eigenvalue-decomposition of a companion matrix in Step 5.
The median error is 1.7 · 10−14 for generic and 4.5 · 10−14 for
planar scenes. 0.1% of the trials for generic and 0.6% for planar
scenes had error magnitudes above 10−6.

cial parts of the feature detection and feature matching. In
the structure and motion component (SaM), one-view and
three-view estimations are combined to incrementally build
the reconstruction with low latency. The whole system in-
cluding all overhead currently operates at 26 frames per sec-
ond on average on a 2.4GHz machine when using a 3% dis-
parity range. The latency is also small, since there is no
self-calibration and only very local iterative refinements.

6.4. Performance Under Noise
In this section, the performance of the 5-point method in
noisy conditions will be studied and compared to that of the
well known 8 and 7-point methods and a 6-point scheme.
These methods are the most prominent algebraic solutions
for relative orientation of two perspective views with finite
baseline. The names of the methods refer to the smallest
number of point correspondences for which they can oper-

Figure 5: Graphs of the distributions from Table 2.



[ 0.067, 0.287 ] ↔ [ 0.329, 1.297 ]
[ 0.254, 0.0646] ↔ [ 0.523, 1.0807]
[ 0.239,−0.213 ] ↔ [ 0.517, 0.645 ]
[−0.710,−0.693 ] ↔ [−0.141, 0.157 ]
[ 0.661,−0.307 ] ↔ [ 0.950, 0.773 ]

Figure 6: An example of five point correspondences that give rise
to ten distinct physically valid solutions that are well separated
in parameter space and are not caused by numerical inaccuracies.
Our current randomization leads to two cases in 107 with ten dis-
tinct physically valid solutions.

Step 1 2 3 4 5 6 Three-
Point
Pose

Mean
Two
Views

Mean
Three
Views

µs 8 12 23 14 6/root 8/root 5/root 121 134

Table 3: Timings for the algorithm steps (as numbered in Sec-
tion 3.2) on a modest 550MHz machine with highly optimized but
platform-independent code. Including overhead, the 2 and 3 view
functions take 110-140µs and 120-180µs, respectively. Hypoth-
esis generation for RANSAC with 500 samples takes 60ms and
67ms, respectively.

ate and give a finite number of possible solutions. The 5 and
6-point methods require the intrinsics to be known while the
7 and 8-point methods can operate without this knowledge.

According to [10], the linear 8-point method goes at least
as far back as [47]. It was introduced to the computer vision
community by [20] and defended in [13]. It yields a unique
solution. The fact that 7 point correspondences determine
relative orientation up to at most three solutions has been
known at least since [39]. An account of this is given in
[22]. A description of the modern 7-point algorithm can be
found e.g. in [14]. It has been used for RANSAC in e.g.
[41, 25]. The 6-point algorithm gives a unique solution and
was presented in [32].

Recall Equation (10). In the 8-point method, the data is
assumed to be strong enough that x = y = z = 0. Thus
W is extracted directly and we are done. In the 7-point
method, it is assumed that x = y = 0. Thus Z and W are
extracted and by inserting (10) into (5), a cubic equation in
z is obtained. The up to three solutions can be computed in
closed form and we are done. In the 6-point method, it is
assumed that x = 0. Thus Y, Z and W are extracted and
insertion of (10) into the nine cubic constraints (6) yields
the equation system

A
[
y3 y2z yz2 z3 y2 yz z2 y z 1

]�= 0, (30)

where A is a 9 × 10 matrix. The right nullvector v of A
is extracted by QR-decomposition or SVD. We are done by
observing that y = v8/v10 and z = v9/v10.

As discussed in [13], coordinate system normalisation is
crucial for the performance of these algorithms in all but the
minimal cases. We work in the calibrated coordinate system
in all tests. The algorithms are mainly tested as calibrated
algorithms, i.e. we compare their ability to determine trans-

Feature Detection
30ms

Matching with Disparity Range
3% 5% 10%

34ms 45ms 160ms

SaM
50ms

Table 4: Approximate average timings per 720 × 240 frame of
video for the system components on a modest 550MHz machine.
Disparity range for the matching is given in percent of the image
dimensions.

Figure 7: The parameters of the test geometry used in the exper-
iments. The distance to the scene volume is used as the unit of
measure. The depth of the volume in which scene points are ran-
domized is varied, as is the length of the baseline, the direction of
motion, the amount of image noise and the number of points.

lation direction and rotation when the calibration is known.
The SVD of the essential matrix is used to determine the
rotation and translation as proposed in [46]. This step also
enforces the constraints (6).

To get quantitative results we use experiments on syn-
thetic data. The test geometry and its parameters are shown
in Figure 7. The distance to the scene volume is used as the
unit of measure. The depth of the volume in which scene
points are randomized is varied, as is the length of the base-
line, the direction of motion, the amount of image noise and
the number of points. We will primarily cite results for chal-
lenging while realistic conditions. Unless otherwise noted,
the parameters are as shown in Table 5. We will concentrate
on the deviation of the estimated translation direction from
the true value as a function of the level of noise in the image
correspondences. The reason is that the estimates of trans-
lation direction are much more sensitive than the estimates
of rotation, which is widely known, see e.g. [40]. When
rotational errors are cited, they are given as the smallest an-
gle of rotation that can bring the estimate to the true value.
When referring to minimal cases, the minimal number of

Depth 0.5
Baseline 0.1

Image Dimensions 352 × 288(CIF)
Noise Std-dev 1 Pixel
Field of View 45 Degrees

Table 5: The challenging while realistic default parameters used
in the experiments.



Figure 8: Translational error in degrees against noise standard
deviation in pixels of a CIF image. Minimal cases, easy conditions
(Depth=2, Baseline=0.3). Left: Sideways motion. Right: Forward
motion. The trend that the 5-point method outperforms the other
schemes for sideways motion is already visible.

points necessary to get a unique solution is intended (i.e.
6,6,8,8 for the 5,6,7,8-point methods, respectively). For the
minimal cases, the lower quartile of the error distribution
will be used in the plots. The robustness of this measure
is relevant since in RANSAC it is more important to find a
fraction of good hypotheses than to get consistent results.
In the least-squares cases, the average of the error distri-
bution will be used since occasional gross errors are less
tolerable and should be penalized. The plots for minimal
cases are based upon 1000 trials per data point, while the
least-squares plots are based upon 100 trials. In the plots
for least-squares cases, the methods ’5R’ and ’7R’ are in-
cluded. These methods consist of RANSAC with a robust
Bayesian cost function, (compare e.g. [41, 25, 35]) based on
5 and 7-point sampling, respectively, followed by iterative
refinement. In the iterative refinement for ’5R’, the intrinsic
constraints are enforced, while for ’7R’ they are not. These
results are included in order to give an idea of how well it
is possible to do with and without calibration knowledge.
Note however that these methods may not always converge
to the global minimum. Moreover, the robust cost function
is not strictly necessary for synthetic outlier-free data. Thus,
the least-squares results are occasionally better.

Figure 8 shows results for the minimal cases under easy
conditions, i.e. with large baseline and scene depth. Re-
sults are given for both sideways motion and forward mo-
tion. The trend that the 5-point method outperforms the
other schemes for sideways motion is already visible, but all
methods perform well under these easy conditions, which
corroborates the findings of other authors. See e.g. the re-
lated discussion in [31]. Figure 9 shows results under more
challenging conditions, both for the minimal cases and with
100 points. The 5-point method significantly outperforms
the other non-iterative methods for sideways motion. The
5-point results are quite good, while the results of the other
non-iterative methods are virtually useless. As the noise
grows large, the other methods are swamped and begin plac-
ing the epipole somewhere inside the image regardless of
its true position. This phenomenon has been observed pre-
viously by e.g. [15]. It is particularly marked for the 6 and
8 point methods. For the forward motion cases, the results

Figure 10: Rotational error in degrees at varying levels of noise.
Minimal cases. Left: Sideways motion. Right: Forward motion.
Observe that the scale of the rotational errors is much smaller than
the errors in translation direction, corresponding to subpixel pre-
cision. Thus the results of all methods are more than acceptable.

Figure 11: Translational error in degrees with varying number of
points. Left: Sideways motion. Right: Forward motion. The 5-
point method is outstanding for sideways motion, rivaled only by
the iterative methods. The absolute results for the 5-point method
show the most consistent overall results.

are quite different however. This is partly due to a slight de-
terioration of the results for the 5-point method, but mainly
due to a vast improvement of the results for the other meth-
ods. In particular the 8-point method gives excellent results
on forward motion. Note that in the useful regions, the 6
and 7-point methods keep up with the 8-point method for
RANSAC purposes, but not for least-squares purposes.

For completeness, rotational errors are shown in Figure
10. Perhaps somewhat surprisingly, we find that the 5-point
method is weaker than the other methods for determining
rotation. Observe however that the scale of the rotational
errors is much smaller than the errors in translation direc-
tion, corresponding to hundredths of a degree and subpixel
precision. Thus the results of all methods are more than ac-
ceptable and in the sequel we will concentrate on errors in
the estimated translation direction.

The results with respect to a varying number of points
are shown in Figure 11. Again, the 5-point method is out-
standing for sideways motion, rivaled only by the iterative
methods. The sideways results for the 6,7 and 8 point meth-
ods are useless and neither is able to make efficient use of
the additional points. Again, their results for forward mo-
tion are greatly improved, headed by the 8-point method.
Note that the absolute results for the 5-point method are al-
most the same for both cases, showing the most consistent
overall results. This is seen even more clearly in Figure
12, where the performance for varying direction of motion
is investigated. The results for the 5-point method and the
iterative methods exhibit a satisfying consistency over all
directions, although one might consider combining the min-



Figure 9: Translational error against noise under the more challenging default conditions of Table 5. A: Minimal cases, sideways motion.
B: Minimal cases, forward motion. C: 100 Points, sideways motion. D: 100 Points, forward motion. The 5-point method significantly
outperforms the other non-iterative methods for sideways motion.

imal 5-point method with one of the other methods for for-
ward motion in challenging conditions. Meanwhile, the re-
sults for the other methods are acceptable for minimal cases
in easy conditions, but unacceptable for sideways motion
in challenging conditions, both for minimal cases and with
many points. As already mentioned, when overwhelmed by
noise these methods are prone to incorrectly selecting an
epipole estimate somewhere inside the image, where it is
close to the actual point correspondences.

In Figure 13 the performance for various magnitudes of
motion is investigated. Again, the 5-point method performs
well for sideways motion and similarly for forward motion
although slightly worse for forward motion with very small
baseline. The sideways results for the other non-iterative
methods are not useable unless the baseline is quite long.
Their results are much better for forward motion. The 8-
point method outperforms the 6 and 7-point methods for
least-squares purposes, but all three are very similar in the
minimal cases.

Figure 14 depicts results for shallow scenes. Theory says
that for perfectly planar scenes there are up to two solutions
for relative orientation in the calibrated setting, but a two-
dimensional family of solutions in the uncalibrated frame-
work. In the uncalibrated framework, the translation direc-
tion is not resolvable. See Section 4 for further details and
references. This is also reflected in practice for sideways
motion, where the 5-point method is the only non-iterative
method of any use. The reader may wonder why the 6-point
method, which is essentially a calibrated method, is not per-
forming better. The answer is that it makes suboptimal use
of the intrinsic constraints and does not enforce them fully.
It is therefore degenerate for planar scenes in much the same
way as the uncalibrated methods [33]. Note how in the face
of the ambiguity, the 6 and 8-point methods default the po-
sition to the center of the image, yielding the worst possible
results. It is almost tautological that the results are better
for forward motion.

One may now wonder how accurate the calibration
knowledge has to be in order to be useful. A part of the
answer is given in Figure 15, where we investigate how an
imprecise focal length affects the estimate of the epipole.
The rotations were randomized. Note how the uncalibrated

Figure 15: Translational error with varying miscalibration of the
focal length. The presumed focal length is given as a portion of
its true value. Minimal cases, sideways motion. Left: Easy condi-
tions. Right: Default conditions. Here, the only way to get accept-
able results is to use the 5-point method and have good calibration.

methods are unaffected, while the calibrated methods do
better for the true focal length. With accurate calibration,
the 5-point method is superior. Under the default condi-
tions, the only way to obtain acceptable results is to use
the 5-point method with accurate calibration. The figure
suggests that to get any benefits, the calibration should be
at least within 10% and that significant benefits are reaped
with higher accuracy. With inaccurate calibration the results
are impaired so that the uncalibrated methods do better un-
der easy conditions.

6.5. System Results

So far, we have concentrated on synthetic data in order to
get a quantitative evaluation of the 5-point method. In Fig-
ure 16 a real result is shown. The intrinsic parameters of
the camera were calibrated with the method of Zhang [49].
The reconstruction exhibits a regularity and accuracy that is
typically not obtained with an uncalibrated method until the
calibration constraints have been enforced through a global
bundle adjustment. Observe that our default test parameters
correspond well to the geometry in this example in terms
of baseline and scene depth. With the sideways motion it
is right in the domain where we have just shown that the
5-point method gives crucial accuracy improvements. Fig-
ure 17 shows how this result changes with an incorrectly
assumed focal length.

The 5-point method is used in a real-time system for es-
timation of camera motion in video sequences. This is en-
abled by fast feature tracking, the efficient 5-point method



Figure 12: Translational error at varying directions of motion given in degrees from the forward direction. Left: Minimal cases, easy
conditions (Depth=2, Baseline=0.3). Middle: Minimal cases, default conditions. Right: 50 Points, default conditions.

Figure 13: Translational error at varying magnitudes of motion. A: Minimal cases, sideways motion. B: Minimal cases, forward motion.
C: 50 Points, sideways motion. D: 50 Points, forward motion.

Figure 14: Translational error for small scene depths. Left: Minimal cases, sideways motion. Middle: 50 Points, sideways motion. Right:
50 Points, forward motion. For sideways motion, the 5-point method is the only non-iterative method of any use.



and the preemptive scoring. A result is shown in Figure 18.
In the past, camera motion was successfully estimated with
an uncalibrated method in sections of this sequence [25],
but never in one piece or in real-time. Note that especially
the outer circle is in a domain where our results suggest that
when using neighboring frames, uncalibrated methods stab
blindly in the dark for the translation direction. They would
be saved only by the redundancy of RANSAC and the im-
provement from subsequent iterative refinement. Thus, se-
lecting baselines carefully becomes imperative. Careful se-
lection of baselines is always important, but is out of the
scope of this paper, instead the reader is referred to [24].
Another example is shown in Figure 19. A practical ex-
ample of successful reconstruction in the face of planar de-
generacy is shown in Figure 20. Only approximate intrinsic
parameters were used and no global bundle adjustment was
performed.

Figure 21 shows a result of estimation that was done in
real-time from a camcorder tape playing back through the
PC capture card. Thus, the system has to deal with capture,
dropping frames if not able to keep up etc. The estimation
was made with a graphical feature-track window and a 3D
scene window displaying. In this mode, the delay from the
tape to the reconstruction displaying on the screen is less
than a second. A result from live estimation is shown in
Figure 23. No knowledge of the motion was used in either
case and the system parameters were identical. This shows
that the system can handle forward as well as sideways mo-
tion. The system has been demonstrated live at major con-
ferences [26, 27, 28, 29]. The system has been used to pro-
cess video from a variety of platforms, including handheld
video, video from automotive, ground vehicle and robotics
applications and aerial video. An example with aerial video
is shown in Figure 22.

7. Summary and Conclusions

An efficient algorithm for solving the five-point relative
pose problem was presented. The algorithm was used in
conjunction with random sampling consensus to solve for
unknown structure and motion over two, three or more
views. The efficiency of the algorithm is very impor-
tant since it will typically be applied within this kind of
hypothesize-and-test architecture, where the algorithm is
executed for hundreds of different five-point samples. Prac-
tical live and in real-time reconstruction results were given
and it was shown that the calibrated framework can continue
to operate correctly despite scene planarity.

The performance of the 5-point algorithm was compared
to the performance of the well known 8 and 7-point methods
and a 6-point scheme. It was shown quantitatively that there
are realistic conditions under which the 5-point method can
operate successfully while the other non-iterative methods

Figure 16: Result from the turntable sequence ’Stone’. No prior
knowledge about the motion or that it closes on itself was used in
the estimation. The circular shape of the estimated trajectory is
a verification of the correctness of the reconstruction, which was
made with low delay and bundle adjustment only for groups of 3
views.

Figure 17: Reconstructions obtained from the ’Stone’ sequence
by setting the focal length to incorrect values. The focal lengths
used were 0.05, 0.3, 0.5, 0.7, 1.0, 1.3, 1.5, 2.0 and 3.0 times the
value obtained from calibration. For too small focal lengths, the
reconstruction ’unfolds’ and vice versa.



Figure 18: Reconstruction result made at real-time rate from the
sequence ’Flowerpot’ taken with a hand-held camera. Only ap-
proximate intrinsic parameters were used and no global bundle
adjustment was performed. The handheld camera first moves in
an outer circle and then an inner circle, with some forward motion
in between.

Figure 19: Reconstruction from the sequence ’Girlsstatue’ that
was acquired with a handheld camera. Only approximate intrinsic
parameters were used and no global bundle adjustment was per-
formed.

Figure 20: Reconstruction from the sequence ’Farmhouse’,
which contains long portions where a single plane fills the field of
view. The successful reconstruction is a strong practical proof of
the fact that the calibrated framework can overcome planar struc-
ture degeneracy without relying on the degeneracy or trying to de-
tect it.

Figure 21: Estimation of the motion of a handheld camera, in-
duced by walking down a 160 meters long corridor. The whole
motion is successfully integrated into the same coordinate frame.
Note how the straight trajectory builds up, with different stages
shown from left to right.

Figure 22: Reconstruction from an aerial video that was pro-
cessed in real-time without any use of external positioning data
or assumptions on the motion. The plane first flies in a straight
line and then makes a cul-de-sac shaped turn and returns.



Figure 23: Estimation of a freehand motion created with a cal-
ibration cylinder in one hand and a camcorder in the other. The
estimation was done live. No knowledge of the structure or mo-
tion was used and the system is identical to the one used in Figure
21.

fail. The results indicate that a combination of the 5-point
method and the 8-point method may be a good option, since
the 5-point method clearly outperforms the other methods
for sideways motion and the 8-point method does best for
forward motion. If one had to pick a winner overall between
the non-iterative methods, it would have to be the 5-point
algorithm, which performs acceptably in both cases, while
the 8-point method performs very well on forward but very
poorly on sideways motion.
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Appendixes

A. Definition of Sturm Chain
Let p(z) be a general polynomial of degree n >= 2. Here,
the significance of general is that we ignore special cases for
the sake of brevity. For example, p(z) is assumed to have no
multiple roots. Moreover, the polynomial divisions carried
out below are assumed to have a non-zero remainder. Under
these assumptions, the Sturm chain is a sequence of poly-
nomials f0, . . . , fn of degrees 0, . . . , n, respectively. fn is
the polynomial itself and fn−1 is its derivative:

fn(z) ≡ p(z) (31)

fn−1(z) ≡ p ′(z). (32)

For i = n, . . . , 2 we carry out the polynomial division
fi/fi−1. Let the quotient of this division be qi(z) =
kiz + mi and let the remainder be ri(z), i.e. fi(z) =
qi(z)fi−1(z) + ri(z). Then define fi−2(z) ≡ −ri(z). Fi-
nally, define the coefficients m0, m1 and k1 such that

f0(z)= m0 (33)

f1(z)= k1z + m1. (34)

Once the scalar coefficients k1, . . . , kn and m0, . . . , mn

have been derived, the Sturm chain can be evaluated at any
point z through Equations (33, 34) and the recursion

fi(z)= (kiz + mi)fi−1(z) − fi−2(z) i = 2, . . . , n (35)

Let the number of sign changes in the chain be s(z). The
number of real roots in an interval [a, b] is then s(a)− s(b).
Unbounded intervals such as for example [0,∞) can be
treated by looking at m0 and k1, . . . , kn in order to calcu-
late limz→∞ s(z). See also [17], which however does not
use the more efficient recursive formulation.



B. Efficient Singular Value Decompo-
sition of the Essential Matrix

An efficient singular value decomposition according to the
conditions of Theorem 3 is given. Let the essential matrix

be E =
[

ea eb ec

]�
, where ea, eb, ec are column-

vectors. It is assumed that it is a true essential matrix, i.e.
that it has rank two and two equal non-zero singular values.
First, all the vector products ea×eb, ea×ec and eb×ec are
computed and the one with the largest magnitude chosen.
Assume without loss of generality that ea×eb has the largest
magnitude. Define vc ≡ (ea × eb)/|ea × eb|, va ≡ ea/|ea|,
vb ≡ vc × va, ua ≡ Eva/|Eva|, ub ≡ Evb/|Evb| and
uc ≡ ua × ub. Then the singular value decomposition is
given by V =

[
va vb vc

]
and U =

[
ua ub uc

]
.

C. Efficient Triangulation of an Ideal
Point Correspondence

In the situation encountered in the five-point algorithm
where triangulation is needed, a hypothesis for the essen-
tial matrix E has been recovered and along with it the two
camera matrices [I | 0] and P . No error metric has to be
minimized, since for the true solution the rays backpro-
jected from the image correspondence q↔ q ′ are guaran-
teed to meet. For non-ideal point correspondences, prior
correction to guarantee ray-intersection while minimising a
good error metric is recommended. Global minimisation
of ‖.‖2-norm in two views requires solving a sixth degree
polynomial, see [14]. Minimisation of ‖.‖∞-norm [25],
or directional error [30], also yields good results in prac-
tice and can be achieved in closed form an order of mag-
nitude faster. In the ideal situation, triangulation can be
accomplished very efficiently by intersecting three planes
that are back-projected from image lines. The image lines
chosen to generate the three planes are the epipolar line
a corresponding to q ′, the line b through q that is per-
pendicular to a and the line c through q ′ that is perpen-
dicular to Eq. For non-ideal point correspondences, this
scheme finds the world point on the ray backprojected from
q′ that minimizes the reprojection error in the first image.
It triangulates world points at infinity correctly and is in-
variant to projective transformations of the world space.
Observe that a = E�q′, b = q × (diag(1, 1, 0)a) and
c = q′ × (diag(1, 1, 0)Eq). Moreover, A ≡ [ a� 0 ]�

is the plane backprojected from a, B ≡ [ b� 0 ]� is the
plane backprojected from b and C ≡ P �c is the plane back-
projected from c. The intersection between the three planes
A, B and C is now sought. Formally, the intersection is the
contraction Ql ≡ εijklA

iBjCk between the epsilon tensor

εijkl
4 and the three planes. More concretely, d ≡ a × b

is the direction of the ray backprojected from the intersec-
tion between a and b. The space point is the intersection
between this ray and the plane C:

Q ∼ [
d�C4 −(d1C1 + d2C2 + d3C3)

]�
. (36)

Finally, it is observed that in the particular case of an ideal
point correspondence we have d = q, so that computing a, b
and A, B can be avoided altogether.

D Trifocal Sampson Approximation
in Closed Form

To score motion hypotheses over three views we use a
Sampson approximation [14, 42, 25] of the minimum image
perturbation required to bring a triplet of points to trifocal
incidence. A minimal closed form expression is essential
for real-time performance. Since no such expression has
been given in the literature we present one here. The Samp-
son approximation is defined by a vector-valued function g
that is zero for trifocal incidence. The key to obtaining an
efficient expression is selecting a vector function with the
minimal number of dimensions, which is three. We use a
carefully chosen combination of one bilinearity and two tri-
linearities. Let a, b and c be homogeneous coordinate rep-
resentations of the observed points in view 1, 2 and 3, re-
spectively. Let F be the fundamental matrix between view
1 and 3 and let T jk

i be the trifocal tensor that takes a point
ai in view 1, a line wj in view 2 and a line zk in view 3. For
trifocal incidence we then have

c�Fa = 0 (37)

aiwjzkT jk
i = 0 (38)

The line Fa is the epipolar line of a in the third view.
The point d = diag(1, 1, 0)Fa is the point at infinity in
the direction perpendicular to Fa. Let ã, b̃ and c̃ be the
perturbed points, represented in homogeneous coordinates
with unit final coordinate. The line z⊥(c̃) = c̃ × d is the
line through c̃ perpendicular to Fa. Moreover, define the

horisontal line w (b̃) =
[

0 1 −b̃2

]�
and the vertical

line w|(b̃) =
[

1 0 −b̃1

]�
through b̃. Then our Samp-

son function is

g(ã, b̃, c̃, d, F, T ) =

⎡
⎣ c̃�F ã

ãiw (b̃)jz⊥(c̃)kT jk
i

ãiw|(b̃)jz⊥(c̃)kT jk
i

⎤
⎦ . (39)

4The epsilon tensor εijkl is the tensor such that εijklA
iBjCkDl =

det([ A B C D ]).



The 3 × 6 derivative matrix J of g with respect to
(ã1, ã2, b̃1, b̃2, c̃1, c̃2) is computed and the squared Samp-
son error is

g�(JJ�)−1g, (40)

which is computed at (ã, b̃, c̃) = (a, b, c) by tensor con-
tractions and LU-decomposition, Cholesky factorisation or
even Cramers rule for speed. Assuming a Cauchy distri-
bution for the reprojection errors, the robust log-likelihood
contribution is

ρ = ln(1 +
g�(JJ�)−1g

σ2
), (41)

where σ is a scale parameter.
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